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Generation of superpositions of coherent states on a circle
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Abstract. We propose a simple method to obtain a superposition of coherent states on a circle, including
Schrödinger cat states as a special case, via conditional measurement of the state of three level atoms
interacting with a one mode cavity field. In the low amplitude limit, very good approximation of Fock
states can also be generated in this way.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements

1 Introduction

The possibility of accurate manipulation of a cavity field
and the high level of control of its interaction with matter
have lead to the production of photon states with many
non-classical features, such as photon antibunching and
various forms of squeezing [1]. In particular, many theo-
retical schemes have been proposed to generate superposi-
tions of macroscopically distinguishable (coherent) states
(the so-called “Schrödinger Cats”) [2,4], and photon num-
ber state [5]. Even and odd coherent states, for example,
can be produced during the time evolution of a Jaynes-
Cummings Model with large amplitude initial fields at
half the revival time [3], or through the dispersive atom-
field coupling realizing a Quantum Nondemolition Mea-
surement scheme for the photon number distribution [6].
In the latter, a Fock state can also be obtained after many
atoms are let to interact with the field one at a time, lead-
ing to gradual diffusion of the field phase and decimation
of the photon number distribution.

The general idea of using atoms to manipulate the elec-
tromagnetic field state of a micromaser cavity has been
employed in several schemes, often in connection with
state selective measurement. The measurement has to be
performed on each atom exiting the cavity in order to
“reduce” the interaction generated atom-field entangled
state; the projection of the field onto the desired state
can be achieved if the proper sequence of measurement
results is obtained. Based on the same idea, we propose
the use of a three level atom in the V configuration to
generate a class of linear superpositions of coherent states
on a circle, i.e. coherent states with the same modulus but
different phases. It has been shown that certain quantum
states and particularly pure number ones, can be arbi-
trarily well-approximated through such discrete superpo-
sitions, provided the circle has a small enough radius [7].
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Fig. 1. Level scheme of a V -type atom with two degenerate
upper states, interacting with a cavity field of frequency ν de-
tuned from resonance of an amount δ = ω0 − ν.

As we will show in the following, the scheme we propose
is well-suitable for this task.

2 The model

Let us consider the atomic configuration schematically
represented in Figure 1. We suppose the V -type three
level atom to have degenerate upper levels, |a〉 and |c〉,
and to interact with a cavity mode that couples both of
them to the ground state. Defining δ = ω0 − ν as the de-
tuning between the atomic transition frequency and the
field frequency and g1 and g2 as the vacuum Rabi frequen-
cies corresponding to the two transitions, we can write the
Hamiltonian for this system as

H = H0 +HI

with

H0 = ω0|a〉〈a|+ ω0|c〉〈c|+ νa†a (1)

HI = (g1|a〉〈b|a+ h.c.) + (g2|c〉〈b|a+ h.c.) . (2)

If the interaction time is much lower than both the atomic
excited states and cavity lifetimes, all the incoherent pro-
cesses can be neglected.
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With this assumption and choosing the initial condi-
tion as

|ψ, 0〉 =

(∑
n

wn|n〉

)
⊗ (A|a〉+ C|c〉) (3)

we can readily obtain the state vector at any subsequent
time t:

see equation (4) above

where we have defined G2 = |g1|2 + |g2|2, and
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If the condition δ � G(n̄ + 1)1/2 is fulfilled, n̄ being the
mean photon number of the field, the preceding expression
can be approximated as

see equation (6) above.

As expected, the probability to find the atom in its ground
state is very small due to the large detuning.

Supposing the field to be initially in a coherent state,∑
nwn|n〉 = |α〉, the atom to be detected just outside the

cavity and found to be in the state |a〉 or |c〉, the field
state is reduced to either
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respectively.
Here, Pa and Pc are the probability of occupation of

the two upper levels when the atom leaves the interaction
region, while the phase θ is given by

θ =
G2

δ
t.

We see that in both cases the field state is a superposi-
tion of two coherent states with the same modulus, |α|,
but with a phase difference given by θ. It can be noted,

further, that |ψ(1)
field〉(a) and |ψ(1)

field〉(c) are distinct linear
superpositions of the same two states; we will take advan-
tage of this fact when describing the production of an even
coherent state in the following section.

For the sake of simplicity, from now on we suppose that
g1 = g2. This assumption greatly simplifies the algebra,
but all the superpositions we indicate in the following can
still be obtained when the two coupling constants have
different values.

3 States obtained by repeated atom-field
interaction

First, we note that, apart from the phase rotation of νt
due to the free field Hamiltonian evolution, the first term
of the superposition states obtained after the passage of
the first atom exactly reproduces the initial cavity state.
This suggests that, after the passage of a second atom
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with the same velocity, we could find the field in a linear
combination of three coherent states, the third one having
a phase difference of 2θ from the initial one. This is indeed
the case.

More generally, if we suppose that m atom in the same
internal state are sent through the cavity with a well-
selected velocity so as to have the same interaction time
and, further, that they are all found to be in the state |a〉
after the interaction, then, the field state will be

|ψ(m)
field〉m×a = Nm

m∑
k=0

(
m

k

)
(A− C)m−k

× (A+ C)k|αe−i(νT+kθ)〉 (9)

where Nm is a normalization constant, while T is the total
elapsed time from the entrance of the first atom to the exit
of the last one. If the atom injection rate is chosen so that
the cavity is never empty, T is given by mt.

As another example, we can look at the state obtained
when two atoms with the same initial state are detected
one in level |a〉 and the other in level |c〉 after the transit
time. In this case
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{
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+(A+ C)2 exp(−2iθ)|αe−2i(νt+θ)〉
}
. (10)

It is easy to see that this gives an even coherent state
provided that θ = π/2 and, for example, A = 1, C = 0.

If four atoms are sent, and two of them are detected
in |a〉, the other two in |c〉, we have

|ψ(4)
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}
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It can be noted that both these results, equations (10,
11), are independent from the detection order; that is, the
order in which detection outcomes are found is irrelevant,
one needs only that half of the atoms has been found in
|a〉, the other half in |c〉.

3.1 Production of an approximate number state

In all preceding examples, atoms were supposed to be in-
jected always with the same initial state, given in equa-
tion (3). Nothing forbids employing atoms with differently
prepared internal states, and this turns out to be the key
for the production of an approximate number state. As
clearly described in reference [7], the number state |n〉 can
be very well-approximated by a discrete superposition of
(n + 1) equidistant coherent states on a circle, provided
that the chosen circle has a small radius. In particular, the
superposition

n∑
k=0

exp

(
2πi
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k

)
|αe

2πi
n+1k〉 (12)

where α can be any complex number, rapidly converges
to the Fock state |n〉 (apart from normalization) when |α|
becomes small.

We note that the structure of this superposition re-
quires the presence of the factor eiθ in front of the θ de-
phased coherent state. This precisely happens for the su-
perpositions generated in scheme proposed in the previous
section, which is, thus, clearly suitable for this task.

It is easy to see, however, that a superposition like (12)
cannot be produced if the atoms all have the same initial
state, whatever the detection sequence may be. Different
preparations of the internal state are therefore required
for the atoms. The coefficients {Ai, Ci; i = 1, . . . , n} have
to be determined accordingly to the chosen value of n. As
an example, if the state with exactly three photons has
to be prepared, we need three atoms to interact with the
cavity field, initially prepared in a coherent state of small
amplitude. In general, the accuracy of the approximation
with the decreasing modulus of |α| is given by

n!

(2n+ 1)!
|α|2(n+1) + o

(
|α|4(n+1)

)
and |α| ≤ 0.5 suffices in this case, see reference [7].

The three atoms should be prepared in the following
initial states:

|ψatom〉1 =
1
√

2
(|a〉+ i|c〉)

|ψatom〉2 =
1
√

2
(|a〉 − i|c〉)

|ψatom〉3 = |a〉.

The injection order is irrelevant, but all the atoms need
to be detected in state |a〉 after the interaction. Another,
obviously necessary condition is that the interaction time
has to be so chosen such that θ = π/2.

The final field state is given by

|ψfield〉 = N ′
{
|α̃〉+ i|iα̃〉 − | − α̃〉 − i| − iα̃〉

}
where α̃ = αe−3iνt.

We note that this state is a four photon coherent state
of the kind studied in reference [8]. They can be produced
for arbitrary value of |α|, but we illustrate in detail the
case of small amplitude because of its connection with
the Fock state. Indeed, the generation of the approximate
number state can be directly followed in phase space.
Figures 2 and 3 report the evolution of the cavity field
Q-function after the injections of the three atoms in the
previously indicated states for an initially prepared co-
herent state with α = 0.5. The initial Gaussian shaped
function describing the coherent state first shifts toward
the center, then produces a dip there, becoming more and
more symmetric, until it is practically indistinguishable
from that of a number state after the injection of the third
atom.
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Fig. 2. The Q-function of the field after the injection of the three atoms properly prepared to produce the Fock state |3〉.

Fig. 3. Contour plot for the Q-functions of Figure 2.
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4 Conclusions
We have presented an atom-field interaction based scheme
for the production of a large class of superpositions of co-
herent states on a circle whose radius is determined by the
initial field state. The proposed scheme, which requires a
dispersive, non-resonant interaction between a three level
atom in the V configuration and a cavity field initially
prepared in a coherent state, offers the possibility of de-
tecting the atoms in both their excited states, still giving
combinations of states with a given phase shift. This can
be very useful for the preparation of selected superposi-
tions. Moreover, using atoms prepared in different initial
states, a very large class of field states can be generated,
including approximate realization of number states, ob-
tained through a discrete number of coherent states placed
on a circle of small radius.
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